3<\/sub> van der Waals heterostructure planar photodetectors with ultrahigh on\/off ratio and piezo-phototronic effect-induced strain-gated characteristics<\/a>. 2019, Nano Energy, DOI: 10.1016\/j.nanoen.2019.104001.<\/p>\n\u9644\u6ce8\uff1a<\/p>\n
\u4f5c\u8005\u4fe1\u606f\uff1a<\/p>\n
\u901a\u8baf\u4f5c\u8005\uff1a \u6f58\u66f9\u5cf0<\/p>\n
\u7b2c\u4e00\u4f5c\u8005\uff1a \u5f90\u8fc1<\/p>\n
\u7b2c\u4e00\u901a\u8baf\u5355\u4f4d\uff1a \u5317\u4eac\u7eb3\u7c73\u80fd\u6e90\u4e0e\u7cfb\u7edf\u7814\u7a76\u6240<\/p>\n
\u00a0<\/strong><\/p>\n\u8bfe\u9898\u7ec4\u7b80\u4ecb\uff1a<\/strong><\/p>\n\u6f58\u66f9\u5cf0<\/strong>\uff0c\u7814\u7a76\u5458\uff0c\u535a\u58eb\u751f\u5bfc\u5e08\uff0c\u5148\u540e\u5165\u9009\u56fd\u5bb6\u7279\u8058\u4e13\u5bb6\u9752\u5e74\u9879\u76ee\u3001\u81ea\u7136\u57fa\u91d1\u59d4\u201c\u4f18\u79c0\u9752\u5e74\u57fa\u91d1\u201d\uff0c\u5317\u4eac\u5e02\u6d77\u805a\u5de5\u7a0b\u53ca\u7279\u8058\u4e13\u5bb6\u3002<\/p>\n2005\u30012010\u5e74\u5206\u522b\u5728\u6e05\u534e\u5927\u5b66\u6750\u6599\u79d1\u5b66\u4e0e\u5de5\u7a0b\u7cfb\u83b7\u5b66\u58eb\u3001\u535a\u58eb\u5b66\u4f4d\uff0c2011\u4e0e2012\u5e74\u5148\u540e\u83b7\u5f97\u5317\u4eac\u5e02\u4f18\u79c0\u535a\u58eb\u5b66\u4f4d\u8bba\u6587\u5956\u4ee5\u53ca\u5168\u56fd\u4f18\u79c0\u535a\u58eb\u5b66\u4f4d\u8bba\u6587\u5956\u3002\u5176\u540e\u4e8e\u7f8e\u56fd\u4f50\u6cbb\u4e9a\u7406\u5de5\u5b66\u9662\u6750\u6599\u79d1\u5b66\u4e0e\u5de5\u7a0b\u5b66\u9662\u8fdb\u884c\u535a\u58eb\u540e\u7814\u7a76\u3002\u4e3b\u8981\u4ece\u4e8b\u4f4e\u7ef4\u538b\u7535\u534a\u5bfc\u4f53\u5149\u7535\u5668\u4ef6\u7684\u538b\u7535\uff08\u5149\uff09\u7535\u5b50\u5b66\u6548\u5e94\uff08\u538b\u7535\u534a\u5bfc\u4f53\u4e2d\u7684\u529b\u5149\u7535\u8026\u5408\u6548\u5e94\uff09\u53ca\u5fae\u7eb3\u5149\u7535\u529f\u80fd\u5668\u4ef6\u7814\u7a76\u3002\u5728Nat. Photon.<\/em><\/strong>\u3001<\/em><\/strong>Chem. Rev. Nat. Comm.<\/em><\/strong>\u3001<\/em><\/strong>Adv. Mater.<\/em><\/strong>\u3001<\/em><\/strong>Adv. Energy Mater.<\/em><\/strong>\u3001<\/em><\/strong>Angew. Chem. Int. Edit.<\/em><\/strong>\u3001<\/em><\/strong>Nano Energy<\/em><\/strong>\u3001<\/em><\/strong>ACS Nano <\/em><\/strong>\u7b49\u671f\u520a\u4e0a\u53d1\u8868SCI\u8bba\u6587160\u4f59\u7bc7\uff0c\u5f15\u75286700\u591a\u6b21\u3002\u73b0\u4efbScience Bulletin<\/em><\/strong>\u671f\u520a\u6750\u6599\u5b66\u526f\u4e3b\u7f16\u4e0eNanotechnology\u7684\u5149\u7535section editor\u3002<\/p>\n <\/p>\n
\u7814\u7a76\u9886\u57df\uff1a<\/strong><\/p>\n\u538b\u7535\u7535\u5b50\u5b66\u4e0e\u538b\u7535\u5149\u7535\u5b50\u5b66\u5b9e\u9a8c\u5ba4\u4e3b\u8981\u4ece\u4e8b\u4f4e\u7ef4\u538b\u7535\u534a\u5bfc\u4f53\u5fae\u7eb3\u5149\u7535\u529f\u80fd\u5668\u4ef6\u4e2d\u7684\u529b\u5149\u7535\u8026\u5408\u6548\u5e94\uff08\u538b\u7535\u7535\u5b50\u5b66\u6548\u5e94\uff09\u53ca\u76f8\u5173\u5e94\u7528\u7814\u7a76\u3002\u4ee5\u6784\u5efa\u9ad8\u6027\u80fd\u5fae\u7eb3\u5149\u7535\u529f\u80fd\u5668\u4ef6\u4e3a\u76ee\u6807\uff0c\u4ee5\u4f4e\u7ef4\u538b\u7535\u534a\u5bfc\u4f53\u4e3a\u8f7d\u4f53\uff0c\u4ece\u6750\u6599\u7684\u8bbe\u8ba1\u548c\u53ef\u63a7\u5236\u5907\u51fa\u53d1\uff0c\u63a2\u7d22\u538b\u7535\uff08\u5149\uff09\u7535\u5b50\u5b66\u6548\u5e94\u5bf9\u538b\u7535\u534a\u5bfc\u4f53\u5149\u7535\u5668\u4ef6\u6027\u80fd\u7684\u8c03\u5236\u673a\u5236\uff0c\u7814\u7a76\u4e86\u4ece\u5355\u6839\u7eb3\u7c73\u7ebf\u539f\u578b\u5668\u4ef6\u5230\u7531\u5927\u89c4\u6a21\u7eb3\u7c73\u7ebf\u9635\u5217\u6784\u6210\u7684\u96c6\u6210\u5668\u4ef6\uff0c\u5728\u8d85\u9ad8\u5206\u8fa8\u7387\u5e94\u529b\u4f20\u611f\u53ca\u6210\u50cf\u3001\u9ad8\u6027\u80fd\u4f20\u611f\u5668\u9635\u5217\u7b49\u7814\u7a76\u65b9\u9762\u53d6\u5f97\u4e86\u91cd\u8981\u8fdb\u5c55\u3002<\/p>\n
\u00a0 \u00a0\u76ee\u524d\uff0c\u5b9e\u9a8c\u5ba4\u4e3b\u8981\u5f00\u5c55\u4ee5\u4e0b\u4e09\u65b9\u9762\u7814\u7a76\uff1a<\/p>\n
\n- \u4e09\u4ee3\u534a\u5bfc\u4f53\u7eb3\u7c73\u5668\u4ef6\u4e2d\u7684\u538b\u7535\uff08\u5149\uff09\u7535\u5b50\u5b66\u6548\u5e94<\/li>\n
- \u65b0\u578b\u5fae\u7eb3\u5149\u7535\u5668\u4ef6<\/li>\n
- \u89e6\u611f\u7535\u5b50\u5b66\u4e0e\u667a\u80fd\u673a\u5668\u4eba<\/li>\n<\/ol>\n
<\/p>\n
\u8bfe\u9898\u7ec4\u8fd1\u4e24\u5e74\u5728\u8be5\u9886\u57df\u53d1\u8868\u7684\u4e3b\u8981\u8bba\u6587\u6c47\u603b\uff1a<\/strong><\/p>\n\n- Piezotronics and piezo-phototronics of third generation semiconductor nanowires, Chemical Reviews<\/em><\/strong>, 2019, 119, 9303.<\/li>\n
- Piezo-Phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells, ACS Nano<\/em><\/strong>, 2019, 134, 4507.<\/li>\n
- Controllable Growth of Aligned Monocrystalline CsPbBr3<\/sub> Microwire Arrays for Piezoelectric-induced Dynamic Modulation of Single-Mode-Lasing, Advanced Materials<\/em><\/strong>, 2019, 31, 1900647.<\/li>\n
- Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor, Advanced Functional Materials<\/em><\/strong>, 2019,<\/li>\n
- Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3<\/sub>NH3<\/sub>PbBr3<\/sub> perovskite cuboids, Science Bulletin<\/em><\/strong>, 2019, 64, 698.<\/li>\n
- Achieving High-resolution Pressure Mapping via Flexible GaN\/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy<\/em><\/strong>, 2019, 58, 633.<\/li>\n
- Piezophotonic Effect Based on Mechanoluminescent Materials for Advanced Flexible Optoelectronic Applications\u201d, Nano Energy<\/em><\/strong>, NGPT special issue, 2019, 55, 389.<\/li>\n
- Unveiling the interlayer electron transport and its influence on the whole electric properties of black phosphorus, Science Bulletin<\/em><\/strong>, 2019, 64, 254.<\/li>\n
- Dynamic Regulating of Single-Mode-Lasingin ZnO Microcavity by Piezoelectric Effect, Materials Today<\/em><\/strong>, 2018, 24, 33.<\/li>\n
- Flexible Photodetector Arrays Based on Patterned CH3<\/sub>NH3<\/sub>PbI3<\/sub>-xClx<\/sub> Perovskite Film for Real-time Photosensing and Imaging, Advanced Materials<\/em><\/strong>, 2018, 30, 1805913.<\/li>\n
- Recent progress in flexible pressure sensors arrays: from design to applications, Journal of Materials Chemistry C<\/em><\/strong>, 2018, 6, 11878.<\/li>\n
- ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect, Nano Energy<\/em><\/strong>, 2018, 49, 508.<\/li>\n
- In2<\/sub>O3<\/sub> Nanowires Field-Effect Transistors with Sub-60 mV\/dec Subthreshold Swing Stemming from Negative Capacitance and their Logic Applications, ACS Nano<\/em><\/strong>, 2018, 12, 9608.<\/li>\n
- Progress in piezotronic and piezo-phototronic effect of two-dimensional materials, 2D Mater<\/em><\/strong>, 2018, 5, 042003.<\/li>\n
- Large and Ultra-Stable All-Inorganic CsPbBr3<\/sub> Monocrystalline Films: Low-Temperature Growth and Application for High-Performance Photodetectors, Advanced Materials<\/em><\/strong>, 2018, 30, 1802110.<\/strong><\/li>\n
- Piezotronic Effect Tuning on ZnO Microwire WGM Lasing Mode, ACS Nano<\/em><\/strong>, 2018, 12, 11899.<\/li>\n
- Piezophototronic effect enhanced photoresponse of the flexible CIGS heterojunction photodetectors, Advnced Functional Materials<\/em><\/strong>, 2018, 28, 1707311.<\/li>\n
- Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2<\/sub>O3<\/sub> Heterojuction Microwire, Advanced Function Materials<\/em><\/strong>, 2018, 28, 1706379.<\/li>\n<\/ol>\n
<\/p>\n
\u8bfe\u9898\u7ec4\u76f8\u5173\u9886\u57df\u8bba\u6587\u63a8\u8350\uff1a<\/strong><\/p>\n\u538b\u7535\uff08\u5149\uff09\u7535\u5b50\u5b66\uff1a<\/p>\n
\n- High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics<\/em><\/strong>, 2013, 7, 752-758<\/li>\n
- Enhanced Emission Intensity of Vertical Aligned Flexible ZnO Nanowire\/p-Polymer Hybridized LED Array by Piezo-phototronic Effect, Nano Energy<\/em><\/strong>, 2015, 14, 364-371.<\/li>\n
- Enhancing Light Emission of ZnO-Nanofilm\/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect, Mater. <\/em><\/strong>2015, 27, 4447.<\/li>\n
- Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array, Mater. <\/em><\/strong>2015, 27, 7963<\/li>\n
- Enhancing Photoresponsivity of Self-Aligned MoS2<\/sub> Field-Effect Transistor by Piezo-Phototronic Effect from GaN Nanowire, ACS Nano, <\/em><\/strong>2016, 10, 7451.<\/li>\n
- Enhanced performances of flexible ZnO\/perovskite solar cells by piezo-phototronics effect, Nano Energy, <\/em><\/strong>2016, 23, 27.<\/li>\n
- Flexible LED Arrays Made of Transferred Si-Microwires-ZnO-Nanofilm with Piezo-Phototronic Effect Enhanced Lighting, ACS Nano, <\/em><\/strong>2017, 11, 3883.<\/li>\n
- Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2<\/sub>O3<\/sub> Heterojuction Microwire, Advanced Function Materials<\/em><\/strong>, 2018, 28, 1706379.<\/li>\n
- Achieving High-resolution Pressure Mapping via Flexible GaN\/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy<\/em><\/strong>, 2019, 58, 633.<\/li>\n<\/ol>\n
\u65b0\u578b\u5fae\u7eb3\u5668\u4ef6\uff1a<\/strong><\/p>\n\n- MoS2<\/sub> Negative Capacitance Field Effect Transistors with Subthreshold Swing below the Physics Limit, Advanced Materials<\/em><\/strong>,<\/em> 2018, 30, 1800932.<\/li>\n
- In2<\/sub>O