{"id":173871,"date":"2019-04-26T06:30:06","date_gmt":"2019-04-25T22:30:06","guid":{"rendered":"\/\/m.iemloyee.com\/?p=173871"},"modified":"2019-04-27T17:22:50","modified_gmt":"2019-04-27T09:22:50","slug":"%e6%9d%90%e6%96%99%e4%ba%ba%e6%8a%a5%e5%91%8a-%e6%9d%90%e6%96%99%e9%a2%86%e5%9f%9f%e5%bc%95%e7%94%a8%e6%9c%80%e9%ab%98%e7%9a%84100%e7%af%87%e6%96%87%e7%ab%a0%ef%bc%8c%e4%bd%a0%e8%af%bb%e8%bf%87","status":"publish","type":"post","link":"\/\/m.iemloyee.com\/?p=173871","title":{"rendered":"\u6750\u6599\u4eba\u62a5\u544a | \u6750\u6599\u9886\u57df\u5f15\u7528\u6700\u9ad8\u7684100\u7bc7\u6587\u7ae0\uff0c\u4f60\u8bfb\u8fc7\u54ea\u4e9b\uff1f"},"content":{"rendered":"
\u672c\u6587\u4ee5web\u00a0of\u00a0science\u4e3a\u57fa\u7840\uff0c\u68c0\u7d22\u4e86\u4ece1884\u5e74\u52302019\u5e74\u6750\u6599\u9886\u57df\u76f8\u5173\u7684\u6587\u7ae0\uff0c\u6309\u7167\u5f15\u7528\u91cf\u4ece\u9ad8\u5230\u4f4e\u6392\u5217\uff0c\u901a\u8fc7\u4eba\u5de5\u9009\u53d6\uff0c\u627e\u51fa\u4e86\u4ece1884\u5e74\u52302018\u5e74\u6750\u6599\u9886\u57df\u5f15\u7528\u6700\u9ad8\u7684100\u7bc7\u6587\u7ae0\uff0c\u5e76\u5bf9\u5b83\u4eec\u8fdb\u884c\u4e86\u4e00\u7cfb\u5217\u7684\u5206\u6790\uff0c\u5927\u5bb6\u6765\u770b\u770b\u5427\u3002<\/p>\n
\u8fd9100\u7bc7\u6587\u7ae0\u4e2d\uff0c\u5f15\u7528\u91cf\u6700\u9ad8\u7684\u662f1976\u5e74\u53d1\u8868\u5728\u201cACTA CRYSTALLOGRAPHICA SECTION A\u201d\u4e0a\uff0c\u9898\u4e3a\u201cRevised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides\u201d\uff0c\u5f15\u7528\u6b21\u6570\u9ad8\u8fbe41434\uff1b\u5f15\u7528\u91cf\u6700\u4f4e\u7684\u662f2002\u5e74\u53d1\u8868\u5728\u201cJOURNAL OF PHYSICS-CONDENSED MATTER\u201d\u4e0a\uff0c\u9898\u4e3a\u201cThe\u00a0SIESTA Method\u00a0for\u00a0Ab\u00a0Intio\u00a0Order-N Materials\u00a0Simulation\u201d\uff0c\u5f15\u7528\u6b21\u6570\u4e3a7712\u3002\u8fd9100\u7bc7\u6587\u7ae0\u4e2d\uff0c\u7814\u7a76\u578b\u8bba\u658776\u7bc7\uff0c\u7efc\u8ff024\u7bc7\u3002<\/p>\n
1. \u5e74\u4ee3\u5206\u5e03<\/b><\/strong><\/p>\n \u4ece\u56fe\u4e0a\u53ef\u4ee5\u770b\u5230\uff0c\u8fd9100\u7bc7\u6587\u7ae0\uff0c\u670960%\u5206\u5e03\u57281990-2010\u5e74\u533a\u95f4\uff0c\u670915\u7bc7\u5206\u5e03\u57281980-1990\u5e74\u533a\u95f4\uff0c7\u7bc7\u5206\u5e03\u57281970-1980\u5e74\uff0c5\u7bc7\u5206\u5e03\u57282010\u5e74\u4ee5\u540e\u3002\u5176\u4e2d1920-1930\u5e74\u548c1940-1950\u5e74\u533a\u95f4\u51fa\u73b00\u7bc7\u7684\u60c5\u51b5\uff0c\u8fd9\u4e2a\u65f6\u95f4\u6070\u597d\u8ddf\u4e24\u6b21\u4e16\u754c\u5927\u6218\u5f88\u543b\u5408\uff0c\u8fd9\u662f\u5de7\u5408\u8fd8\u662f\u5fc5\u7136\u5462\uff0c\u5927\u5bb6\u53ef\u4ee5\u5728\u7559\u8a00\u533a\u8fdb\u884c\u8ba8\u8bba\u3002<\/p>\n 2.\u56fd\u5bb6\u5206\u5e03<\/b><\/strong><\/p>\n \u8fd9\u91cc\u4ec5\u5bf9\u7b2c\u4e00\u5355\u4f4d\u7684\u56fd\u7c4d\u8fdb\u884c\u7edf\u8ba1\uff0c\u6240\u6709\u6570\u636e\u6765\u81eaweb\u00a0of\u00a0science\u3002\u4ece\u4e0a\u56fe\u53ef\u4ee5\u770b\u5230\uff0c\u7f8e\u56fd\u4ee553\u7bc7\u9065\u9065\u9886\u5148\u5176\u4ed6\u56fd\u5bb6\uff0c\u6392\u5728\u7b2c\u4e00\u4f4d\uff1b\u6392\u5728\u7b2c\u4e8c\u4f4d\u7684\u82f1\u56fd\u670912\u7bc7\u6587\u7ae0\uff1b\u4e4b\u540e\u662f\u6cd5\u56fd\u4ee5\u516d\u7bc7\u6587\u7ae0\u4f4d\u5217\u7b2c\u4e09\uff1b\u65e5\u672c\u3001\u5fb7\u56fd\u548c\u610f\u5927\u5229\u4ee55\u7bc7\u6587\u7ae0\u5e76\u5217\u7b2c\u56db\uff1b\u7b2c\u4e03\u4f4d\u662f\u8377\u5170\uff0c\u6709\u56db\u7bc7\u6587\u7ae0\uff1b\u7b2c\u516b\u4f4d\u662f\u62e5\u6709\u4e09\u7bc7\u6587\u7ae0\u7684\u5965\u5730\u5229\uff1b\u63a5\u4e0b\u6765\u662f\u745e\u58eb\u4ee5\u4e24\u7bc7\u6587\u7ae0\u4f4d\u5217\u7b2c\u4e5d\uff1b\u540e\u9762\u7684\u4e39\u9ea6\u3001\u52a0\u62ff\u5927\u3001\u4e2d\u56fd\u3001\u667a\u5229\u548c\u897f\u73ed\u7259\uff0c\u4ee5\u4e00\u7bc7\u6587\u7ae0\u5e76\u5217\u7b2c\u5341\u3002\u4ece\u76ee\u524d\u7684\u6570\u636e\u6765\u770b\uff0c\u8fd9\u4e9b\u6587\u7ae0\u4e3b\u8981\u6709\u6b27\u7f8e\u53d1\u8fbe\u56fd\u5bb6\u6240\u8d21\u732e\u3002\u6211\u4eec\u4e5f\u76f8\u4fe1\u968f\u7740\u4e2d\u56fd\u6750\u6599\u79d1\u5b66\u7684\u9ad8\u901f\u53d1\u5c55\uff0c\u5341\u5e74\u4ee5\u540e\u8fd9\u4e2a\u6570\u636e\u4f1a\u53d8\u5f97\u5f88\u4e0d\u4e00\u6837\u3002<\/p>\n \u503c\u5f97\u4e00\u63d0\u7684\u662f\uff0c\u4e2d\u56fd\u5165\u9009\u7684\u8fd9\u4e00\u7bc7\u6587\u7ae0\u662f\u5409\u6797\u5927\u5b66\u548c\u6d1b\u9633\u5e08\u8303\u5927\u5b66\u5408\u4f5c\uff0c2013\u5e74\u5728Journal of Physical Chemistry C\u4e0a\u53d1\u8868\u7684\u9898\u4e3a\u201cExploring High-Pressure Lithium Beryllium Hydrides: A New Chemical Perspective\u201d\u7684\u7814\u7a76\u578b\u8bba\u6587\u3002\u76ee\u524d\u4e3a\u6b62\uff0c\u8fd9\u7bc7\u6587\u7ae0\u7684\u5f15\u7528\u91cf\u5df2\u7ecf\u9ad8\u8fbe10284\u6b21\u3002\u8fd9\u7bc7\u6587\u7ae0\u4e5f\u53ef\u4ee5\u8ba4\u4e3a\u662f\u4e2d\u56fd\u673a\u6784\u5728\u6750\u6599\u9886\u57df\u53d1\u8868\u6587\u7ae0\u5f15\u7528\u91cf\u6700\u9ad8\u7684\u4e00\u7bc7\u3002<\/p>\n 3.\u673a\u6784\u5206\u5e03<\/b><\/strong><\/p>\n \u8fd9\u91cc\u4ec5\u5bf9\u7b2c\u4e00\u5355\u4f4d\u8fdb\u884c\u7edf\u8ba1\uff0c\u6240\u6709\u6570\u636e\u6765\u81eaweb\u00a0of\u00a0science\u3002\u4ece\u4e0a\u56fe\u53ef\u4ee5\u770b\u5230\uff0c\u52a0\u5dde\u5927\u5b66\u7cfb\u7edf\u51ed\u501f\u4e03\u7bc7\u6587\u7ae0\u4f4d\u5217\u7b2c\u4e00\uff1b\u63a5\u4e0b\u6765\u662f\u5251\u6865\u5927\u5b66\u548c\u66fc\u5f7b\u65af\u7279\u5927\u5b66\u4ee5\u56db\u7bc7\u6587\u7ae0\u5e76\u5217\u7b2c\u4e8c\uff1b\u54e5\u4f26\u6bd4\u4e9a\u5927\u5b66\u3001IBM\u3001\u5fb7\u5dde\u5927\u5b66\u7cfb\u7edf\u3001\u4f0a\u5229\u8bfa\u4f0a\u5927\u5b66\u5384\u5df4\u7eb3-\u9999\u69df\u5206\u6821\u548c\u7ef4\u4e5f\u7eb3\u5de5\u4e1a\u5927\u5b66\u4ee5\u4e09\u7bc7\u6587\u7ae0\u5e76\u5217\u7b2c\u56db\u3002<\/p>\n \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u66fc\u5f7b\u65af\u7279\u5927\u5b66\u5165\u9009\u7684\u56db\u7bc7\u6587\u7ae0\uff0c\u6709\u4e09\u7bc7\u662f2010\u5e74\u8bfa\u8d1d\u5c14\u7269\u7406\u5956\u83b7\u5f97\u8005Andre Geim\u548cKonstantin Novoselov\u5171\u540c\u5b8c\u6210\u7684\uff0c\u800c\u5269\u4e0b\u4e00\u7bc7\u5219\u662f\u7531Andre Geim\u6240\u64b0\u5199\u7684\u4e00\u7bc7\u7efc\u8ff0\uff1b\u9664\u6b64\u4e4b\u5916\uff0c\u7ef4\u4e5f\u7eb3\u5de5\u4e1a\u5927\u5b66\u7684\u4e09\u7bc7\u6587\u7ae0\u5168\u90fd\u6765\u81ea\u4e8eGeorg\u00a0Kresse\u3002\u8fd9\u662f\u4e00\u4e2a\u505a\u6750\u6599\u8ba1\u7b97\u7684\u79d1\u5b66\u5bb6\uff0c\u800c\u8fd9\u4e09\u7bc7\u6587\u7ae0\u5206\u522b\u53d1\u8868\u57281993\u30011994\u548c1996\u5e74\u3002\u7531\u4e8e\u5e74\u4ee3\u539f\u56e0\uff0c\u5c0f\u7f16\u5e76\u6ca1\u6709\u627e\u5230\u5173\u4e8e\u8fd9\u4f4d\u79d1\u5b66\u5bb6\u7684\u8d44\u6599\u3002\u6709\u4e86\u89e3\u7684\u540c\u5b66\u4e5f\u53ef\u4ee5\u5728\u7559\u8a00\u533a\u7ed9\u5927\u5bb6\u63d0\u4f9b\u66f4\u591a\u7684\u4fe1\u606f\u3002<\/p>\n \u9664\u6b64\u4e4b\u5916\uff0c\u8fd9100\u7bc7\u6587\u7ae0\u6709\u76f8\u5f53\u5927\u4e00\u90e8\u5206\u662f\u7531\u516c\u53f8\u4e2d\u7684\u7814\u7a76\u9662\u6240\u8d21\u732e\u7684\uff0c\u6bd4\u5982\u675c\u90a6\u516c\u53f8\u3001IBM\u3001\u901a\u7528\u7535\u6c14\u3001\u67ef\u8fbe\u7b49\u3002\u8fd9\u90e8\u5206\u7684\u6587\u7ae0\u536012\u7bc7\u3002\u5f15\u7528\u91cf\u7b2c\u4e00\u7684\u6587\u7ae0\u201cRevised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides\u201d\u5c31\u662f\u7531\u7f8e\u56fd\u675c\u90a6\u516c\u53f8\u8d21\u732e\u7684\u3002<\/p>\n 4.\u5b8c\u6210\u5355\u4f4d\u6570\u91cf<\/strong><\/p>\n \u9664\u6b64\u4e4b\u5916\uff0c\u5927\u6982\u7531\u4e8e\u5165\u9009\u7684\u6587\u7ae0\u5927\u90fd\u5e74\u4ee3\u4e45\u8fdc\uff0c\u5728\u5408\u4f5c\u5355\u4f4d\u6570\u91cf\u7edf\u8ba1\u4e2d\uff0c\u5e76\u672a\u51fa\u73b0\u5f88\u591a\u5355\u4f4d\u4e00\u8d77\u5b8c\u6210\u7684\u73b0\u8c61\u3002\u4ec5\u4e00\u4e2a\u5355\u4f4d\u5b8c\u6210\u7684\u6587\u7ae0\u7adf\u7136\u5360\u670951\u7bc7\uff1b\u4e24\u4e2a\u5355\u4f4d\u5360\u670922\u7bc7\uff0c\u4e09\u4e2a\u5355\u4f4d14\u7bc7\uff0c\u56db\u4e2a\u5355\u4f4d7\u7bc7\uff0c\u4e94\u4e2a\u53ca\u5176\u4ee5\u4e0a\u4ec5\u67096\u7bc7\u3002\u8fd9\u4e0e\u5f53\u4e0b\u4e00\u7bc7\u6587\u7ae0\u7531\u597d\u51e0\u4e2a\u5355\u4f4d\u5171\u540c\u5b8c\u6210\u7684\u60c5\u51b5\u662f\u975e\u5e38\u4e0d\u4e00\u6837\u7684\u3002<\/p>\n 5.\u9886\u57df\u5206\u5e03<\/b><\/strong><\/p>\n \u5bf9\u8fd9100\u7bc7\u6587\u7ae0\u8fdb\u884c\u9886\u57df\u5f52\u7c7b\uff0c\u53ef\u4ee5\u53d1\u73b0\u4e00\u4e9b\u6bd4\u8f83\u6709\u8da3\u7684\u7ed3\u679c\u3002\u5728\u8fd9100\u7bc7\u6587\u7ae0\u4e2d\uff0c\u8ba1\u7b97\u76f8\u5173\u7684\u6587\u7ae0\u536031\u7bc7\uff0c\u5176\u6b21\u662f\u7eb3\u7c73\u6750\u6599\u768414\u7bc7\uff0c\u968f\u540e\u6676\u4f53\u65b9\u541113\u7bc7\u3002\u77f3\u58a8\u70ef\u76f8\u5173\u7684\u6587\u7ae0\u670912\u7bc7\uff0c\u80fd\u6e90\u6750\u6599\u76f8\u5173\u67099\u7bc7\uff0c\u7535\u5b50\u6750\u6599\u76f8\u51736\u7bc7\u3002\u5176\u4e2d\u7eb3\u7c73\u6750\u6599\u3001\u77f3\u58a8\u70ef\uff08\u4e8c\u7ef4\u6750\u6599\uff09\u3001\u80fd\u6e90\u6750\u6599\u548c\u7535\u5b50\u6750\u6599\u662f\u8fd1\u5e74\u6765\u6750\u6599\u9886\u57df\u7814\u7a76\u7684\u70ed\u70b9\u65b9\u5411\u3002<\/p>\n 6.\u671f\u520a\u5206\u5e03<\/b><\/strong><\/p>\n \u7531\u4e8e\u8fd9100\u7bc7\u6587\u7ae0\u7684\u671f\u520a\u5206\u5e03\u5341\u5206\u5206\u6563\uff0c\u6211\u4eec\u8fd9\u91cc\u4ec5\u7edf\u8ba1\u6392\u5728\u524d\u4e09\u7684\u671f\u520a\u60c5\u51b5\u3002\u4ece\u56fe\u4e0a\u53ef\u4ee5\u770b\u5230\uff0cScience\u56e0\u4e3a\u8d21\u732e13\u7bc7\u6587\u7ae0\u800c\u4f4d\u5217\u7b2c\u4e00\uff0c\u7b2c\u4e8c\u662fNature\u768411\u7bc7\u3002JACS\u3001Chemical\u00a0Reviews\u548cJournal\u00a0of\u00a0Chemical\u00a0Physics\u51ed\u501f\u4e03\u7bc7\u5e76\u5217\u7b2c\u4e09\u3002<\/p>\n \u4ece\u201c\u5f53\u7ea2\u70b8\u4ed4\u9e21\u201d\u5f71\u54cd\u56e0\u5b50\u800c\u8a00\uff0cScience\u3001Nature\u3001Chemical\u00a0Reviews\u81ea\u7136\u662f\u6ca1\u4ec0\u4e48\u597d\u8bf4\u7684\uff0c\u5927\u591a\u6570\u79d1\u7814\u5de5\u4f5c\u8005\u68a6\u5bd0\u4ee5\u6c42\u7684\u53d1\u8868\u671f\u520a\u3002Journal\u00a0of\u00a0Chemical\u00a0Physics\u7684\u5f71\u54cd\u56e0\u5b50\u4ec5\u67092.843\uff0c\u4f46\u5b83\u5374\u8d21\u732e\u4e867\u7bc7\u8d85\u9ad8\u5f71\u54cd\u529b\u7684\u6587\u7ae0\u3002\u9664\u6b64\u4e4b\u5916\uff0c\u8fd9100\u7bc7\u6587\u7ae0\u6709\u76f8\u5f53\u4e00\u90e8\u5206\u6587\u7ae0\u53d1\u8868\u5728\u5f88\u591a\u540d\u4e0d\u89c1\u7ecf\u4f20\u7684\u671f\u520a\u4e0a\u9762\uff0c\u6bd4\u5982\u5f71\u54cd\u56e0\u5b50\u4ec5\u4e3a1.99\u7684Biopolymers\uff0c\u5f71\u54cd\u56e0\u5b50\u4ec5\u4e3a3.221\u7684Journal of Computational Chemistry\u7b49\u7b49\u3002\u8fd9\u4e00\u70b9\u60c5\u51b5\u5728\u672a\u6765\u4f1a\u4e0d\u4f1a\u6539\u53d8\u5462\uff0c\u4e5f\u8bf7\u5927\u5bb6\u5728\u7559\u8a00\u533a\u4e00\u8d77\u8ba8\u8bba\u3002<\/p>\n 7.\u524d100\u7684\u6587\u7ae0<\/strong><\/p>\n 1.revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides<\/a><\/p>\n 2.processing of x-ray diffraction data collected in oscillation mode<\/a><\/p>\n 3.electric field effect in atomically thin carbon films<\/a><\/p>\n 4.helical microtubules of graphitic carbon<\/a><\/p>\n 5.efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set<\/a><\/p>\n 6.the rise of graphene<\/a><\/p>\n 7.vmd: visual molecular dynamics<\/a><\/p>\n 8.equation of state calculations by fast computing machines<\/a><\/p>\n 9.a low-cost, high-efficiency solar-cell based on dye-sensitized colloidal tio2 films<\/a><\/p>\n 10.gaussian-basis sets for use in correlated molecular calculations .1. the atoms boron through neon and hydrogen<\/a><\/p>\n 11.optimization by simulated annealing<\/a><\/p>\n 12.abinitio molecular-dynamics for liquid-metals<\/a><\/p>\n 13.phase annealing in shelx-90 – direct methods for larger structures<\/a><\/p>\n 14.preparation of graphitic oxide<\/a><\/p>\n 15.electrochemical photolysis of water at a semiconductor electrode<\/a><\/p>\n 16.adsorption of gases in multimolecular layers<\/a><\/p>\n 17.accurate and simple analytic representation of the electron-gas correlation-energy<\/a><\/p>\n 18.molecular-dynamics with coupling to an external bath<\/a><\/p>\n 19.general atomic and molecular electronic-structure system<\/a><\/p>\n 20.accurate spin-dependent electron liquid correlation energies for local spin-density calculations – a critical analysis<\/a><\/p>\n 21.crystallography & nmr system: a new software suite for macromolecular structure determination<\/a><\/p>\n 22.atoms, molecules, solids, and surfaces – applications of the generalized gradient approximation for exchange and correlation<\/a><\/p>\n 23.the development and use of quantum-mechanical molecular-models .76. am1 – a new general-purpose quantum-mechanical molecular-model<\/a><\/p>\n 24.nih image to imagej: 25 years of image analysis<\/a><\/p>\n 25.an improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments<\/a><\/p>\n 26.environmental applications of semiconductor photocatalysis<\/a><\/p>\n 27.ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism<\/a><\/p>\n 28.single-crystal structure validation with the program platon<\/a><\/p>\n 29.the electronic properties of graphene<\/a><\/p>\n 30.two-dimensional gas of massless dirac fermions in graphene<\/a><\/p>\n 31.a low-viscosity epoxy resin embedding medium for electron microscopy<\/a><\/p>\n 32.semiempirical gga-type density functional constructed with a long-range dispersion correction<\/p>\n 33.intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint<\/a><\/p>\n 34.numerical-integration of cartesian equations of motion of a system with constraints – molecular-dynamics of n-alkanes<\/a><\/p>\n 35.refinement of macromolecular structures by the maximum-likelihood method<\/a><\/p>\n 36.note on an approximation treatment for many-electron systems<\/a><\/p>\n 37.structure validation in chemical crystallography<\/a><\/p>\n 38.abinitio effective core potentials for molecular calculations – potentials for k to au including the outermost core orbitals<\/a><\/p>\n 39.optical constants of noble metals<\/a><\/p>\n 40.ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields<\/a><\/p>\n 41.organic electroluminescent diodes<\/a><\/p>\n 42.c-60 – buckminsterfullerene<\/a><\/p>\n 43.inhibited spontaneous emission in solid-state physics and electronics<\/a><\/p>\n 44.a profile refinement method for nuclear and magnetic structures<\/a><\/p>\n 45.issues and challenges facing rechargeable lithium batteries<\/a><\/p>\n 46.self-consistent molecular-orbital methods .12. further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules<\/a><\/p>\n 47.a semi-empirical method of absorption correction<\/a><\/p>\n 48.the adsorption of gases on plane surfaces of glass, mica and platinum.<\/a><\/p>\n 49.measurement of the elastic properties and intrinsic strength of monolayer graphene<\/a><\/p>\n 50.room-temperature ionic liquids. solvents for synthesis and catalysis<\/a><\/p>\n 51.atomic force microscope<\/a><\/p>\n 52.light-emitting-diodes based on conjugated polymers<\/a><\/p>\n 53.coherent x-ray scattering for hydrogen atom in hydrogen molecule<\/a><\/p>\n 54.a new mixing of hartree-fock and local density-functional theories<\/a><\/p>\n 55.ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium<\/a><\/p>\n 56.exploring high-pressure lithium beryllium hydrides: a new chemical perspective<\/a><\/p>\n 57.dictionary of protein secondary structure – pattern-recognition of hydrogen-bonded and geometrical features<\/a><\/p>\n 58.phenix: a comprehensive python-based system for macromolecular structure solution<\/a><\/p>\n 59.crystal structure refinement with shelxl<\/a><\/p>\n 60.possible high-tc superconductivity in the ba-la-cu-o system<\/a><\/p>\n 61.a new family of mesoporous molecular-sieves prepared with liquid-crystal templates<\/a><\/p>\n 62.palladium-catalyzed cross-coupling reactions of organoboron compounds<\/a><\/p>\n 63.visible-light photocatalysis in nitrogen-doped titanium oxides<\/a><\/p>\n 64.quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions<\/a><\/p>\n 65.quantum espresso: a modular and open-source software project for quantum simulations of materials<\/a><\/p>\n 66.phaser crystallographic software<\/a><\/p>\n 67.gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology<\/a><\/p>\n 68.use of conductivity measurements in organic solvents for characterisation of coordination compounds<\/a><\/p>\n 69.triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores<\/a><\/p>\n 70.a 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules<\/a><\/p>\n 71.materials for electrochemical capacitors<\/a><\/p>\n 72.all-atom empirical potential for molecular modeling and dynamics studies of proteins<\/a><\/p>\n 73.controlled growth of monodisperse silica spheres in micron size range<\/a><\/p>\n 74.experimental observation of the quantum hall effect and berry’s phase in graphene<\/a><\/p>\n 75.semiconductor clusters, nanocrystals, and quantum dots<\/a><\/p>\n 76.photocatalysis on tio2 surfaces – principles, mechanisms, and selected results<\/a><\/p>\n 77.building better batteries<\/a><\/p>\n 78.synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide<\/a><\/p>\n 79.scalable molecular dynamics with namd<\/a><\/p>\n 80.sir97: a new tool for crystal structure determination and refinement<\/a><\/p>\n 81.gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation<\/a><\/p>\n 82.raman spectrum of graphene and graphene layers<\/a><\/p>\n 83.graphene-based composite materials<\/a><\/p>\n 84.click chemistry: diverse chemical function from a few good reactions<\/a><\/p>\n 85.rapid chromatographic technique for preparative separations with moderate resolution<\/a><\/p>\n 86.sir92 – a program for automatic solution of crystal structures by direct methods<\/a><\/p>\n 87.quantum mechanical continuum solvation models<\/a><\/p>\n 88.strong localization of photons in certain disordered dielectric superlattices<\/a><\/p>\n 89.fuzzy nanoassemblies: toward layered polymeric multicomposites<\/a><\/p>\n 90.the determination of pore volume and area distributions in porous substances .1. computations from nitrogen isotherms<\/a><\/p>\n 91.colloquium: topological insulators<\/a><\/p>\n 92.graphene: status and prospects<\/a><\/p>\n 93.theory of superconductivity<\/a><\/p>\n 94.room-temperature ultraviolet nanowire nanolasers<\/a><\/p>\n 95.functional porous coordination polymers<\/a><\/p>\n 96.unified approach for molecular-dynamics and density-functional theory<\/a><\/p>\n 97.polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions<\/a><\/p>\n 98.carbon nanotubes – the route toward applications<\/a><\/p>\n 99.a stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes<\/a><\/p>\n 100.the siesta method for ab initio order-n materials simulation<\/a><\/p>\n \u5f80\u671f\u56de\u987e:<\/p>\n \u90a3\u4e9b\u5e74\uff0c\u6211\u4eec\u5728SCI\u4e2d\u5403\u8fc7\u7684\u72d7\u7cae\u2026<\/a><\/p>\n \u6211\u4e5f\u66fe\u60f3\u652f\u6301\u56fd\u4ea7\u671f\u520a\uff0c\u4f46\u73b0\u5b9e\u8ba9\u6211\u9009\u62e9\u4e86SCI\uff01<\/a><\/p>\n SCI\u671f\u520a2019\u5e74\u5f71\u54cd\u56e0\u5b50\u9884\u6d4b\uff0c\u6750\u6599\u3001\u5316\u5b66\u3001\u7eb3\u7c73\u7c7b<\/a><\/p>\n \u76d8\u70b9\u4e00\u5e74\u591a\u6765\u5341\u5927\u65b0\u589e\u671f\u520a \u4f60\u51c6\u5907\u6295\u54ea\u4e2a\uff1f\u5f71\u54cd\u56e0\u5b50\u5c06\u662f\u591a\u5c11<\/a><\/p>\n<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n